Search results for "Metabotropic receptor"

showing 10 items of 17 documents

Adhesion G protein-coupled receptor VLGR1/ADGRV1 regulates cell spreading and migration by mechanosensing at focal adhesions.

2021

Summary VLGR1 (very large G protein-coupled receptor-1) is by far the largest adhesion G protein-coupled receptor in humans. Homozygous pathologic variants of VLGR1 cause hereditary deaf blindness in Usher syndrome 2C and haploinsufficiency of VLGR1 is associated with epilepsy. However, its molecular function remains elusive. Herein, we used affinity proteomics to identify many components of focal adhesions (FAs) in the VLGR1 interactome. VLGR1 is localized in FAs and assembles in FA protein complexes in situ. Depletion or loss of VLGR1 decreases the number and length of FAs in hTERT-RPE1 cells and in astrocytes of Vlgr1 mutant mice. VLGR1 depletion reduces cell spread and migration kinetic…

0301 basic medicineBiomoleculesMultidisciplinaryChemistryScienceQCell02 engineering and technologyCell Biology021001 nanoscience & nanotechnologyProteomicsInteractomeArticleCell biologyFocal adhesion03 medical and health sciences030104 developmental biologyMetabotropic receptormedicine.anatomical_structuremedicine0210 nano-technologyHaploinsufficiencyReceptorMolecular BiologyG protein-coupled receptoriScience
researchProduct

Singular Location and Signaling Profile of Adenosine A2A-Cannabinoid CB1 Receptor Heteromers in the Dorsal Striatum

2018

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A(2A) receptor (A(2A)R) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A(2A)R and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A(2A)R-CB1R heteromeric complexes. However, th…

0301 basic medicineCannabinoid receptorAdenosineReceptor Adenosine A2Amedicine.medical_treatmentAdenosinaAdenosine A2A receptormediated inhibitionStriatumBiologyhuntingtons-disease micecannabinoid CB1Mice03 medical and health sciencesglutamatergic neurotransmission0302 clinical medicineReceptor Cannabinoid CB1NeurobiologyNeural PathwaysBasal gangliamedicineAnimalsHumansendocannabinoid systemGenetically modified animalProtein Structure QuaternaryA(2A) receptorsPharmacologyEndocannabinoid systemCorpus Striatumprotein-coupled receptorsProtein SubunitsPsychiatry and Mental healthtransgenic mouse modelHuntington Disease030104 developmental biologyMetabotropic receptornervous systembasal gangliaCannabinoidallosteric interactionsNeuroscience030217 neurology & neurosurgeryNeurobiologiaSignal Transduction
researchProduct

The Effects of N-Acetylcysteine on the Rat Mesocorticolimbic Pathway: Role of mGluR5 Receptors and Interaction with Ethanol

2021

N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC’s effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allo…

0301 basic medicinePharmaceutical ScienceglutamatePharmacologyAcetylcysteine03 medical and health sciencesPharmacy and materia medica0302 clinical medicineNeurochemicalDrug Discoverymental disordersmedicinealcoholismMetabotropic glutamate receptor 5ChemistryCommunicationRGlutamate receptor<i>N</i>-acetylcysteineN-acetylcysteineRS1-441030104 developmental biologyMetabotropic receptorMTEPMechanism of actionMetabotropic glutamate receptorAlcoholismeMedicineMolecular Medicinemedicine.symptomTecnologia farmacèuticaMedicaments030217 neurology & neurosurgerymedicine.drugPharmaceuticals
researchProduct

Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model

2018

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. A reduction in neuronal inhibition mediated by γ-aminobutyric acid type A receptors (GABAARs) has been implicated in the pathophysiology of FXS. Neuroactive steroids (NASs) are known allosteric modulators of GABAAR channel function, but recent studies from our laboratory have revealed that NASs also exert persistent metabotropic effects on the efficacy of tonic inhibition by increasing the protein kinase C (PKC)-mediated phosphorylation of the α4 and β3 subunits which increase the membrane expression and boosts tonic inhibition. We have assessed the GABAergic signaling in the hippocampus of fragile X ment…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesmedicine.medical_specialtyNeuroactive steroidGABAA receptor (GABAAR)fragile XInhibitory postsynaptic potentialTonic (physiology)lcsh:RC321-571tonic inhibition03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineInternal medicinemedicineMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatryProtein kinase COriginal ResearchChemistryphosphorylationDentate gyrusFMR1030104 developmental biologyEndocrinologyMetabotropic receptorGABAergicneurosteroidbenzodiazepine030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Glutamate Activates Phospholipase D in Hippocampal Slices of Newborn and Adult Rats

1993

Phospholipase D (PLD) is activated by many neurotransmitters in a novel signal transduction pathway. In the present work, PLD activity was studied comparatively in hippocampal slices of newborn and adult rats. Basal PLD activity in adult rats was almost three times higher than in newborn rats. In newborn rats, L-glutamate and 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) time- and concentration-dependently enhanced the formation of [3H]phosphatidylpropanol ([3H]PP) and of [3H]phosphatidic acid in the presence of 2% propanol. N-Methyl-D-aspartate and kainate (both 1 mM) caused small, but significant increases (approximately 50%), whereas alpha-amino-3-hydroxy-5-methylisoxazole…

Agingmedicine.medical_specialtyGlutamic AcidKainate receptorIn Vitro TechniquesBiologyHippocampal formationKynurenateHippocampusBiochemistryCellular and Molecular Neurosciencechemistry.chemical_compoundGlutamatesInternal medicinePhospholipase DmedicineAnimalsCycloleucineNeurotransmitterPhospholipase DGlutamate receptorPhosphatidic acidRatsEnzyme ActivationMetabotropic receptorEndocrinologyAnimals NewbornchemistryBiochemistryJournal of Neurochemistry
researchProduct

Activation of phospholipases C and D by the novel metabotropic glutamate receptor agonist tADA.

1997

Abstract In hippocampal slices taken from 8-day-old rats, trans-azetidine-2,4-dicarboxylic acid (tADA), a novel glutamatergic agonist acting preferentially at class I mGluR receptors, activates phosphoinositide and phosphatidylcholine hydrolysis with widely different potencies. Inositol phosphate formation was maximally increased at 10 μM tADA ( ec 50: 1.2 μM), while phospholipase D activation was observed at a tADA concentration of 1 mM. This is the first report of a tADA-induced phospholipase D activity. © 1997 Elsevier Science Ltd. All rights reserved.

Agonistmedicine.drug_classInositol PhosphatesPhospholipaseBiologyIn Vitro TechniquesReceptors Metabotropic GlutamateHippocampusRats Sprague-DawleyCellular and Molecular NeurosciencemedicineExcitatory Amino Acid AgonistsPhospholipase DPhospholipase D activityAnimalsInositol phosphatePharmacologychemistry.chemical_classificationPhospholipase CPhospholipase DRatsEnzyme ActivationMetabotropic receptorBiochemistrychemistryMetabotropic glutamate receptorType C PhospholipasesAzetidinecarboxylic AcidNeuropharmacology
researchProduct

Ontogenetic and Pharmacological Studies on Metabotropic Glutamate Receptors Coupled to Phospholipase D Activation

1997

The present study was aimed at characterizing the metabotropic receptor subtype which is involved in the activation of phospholipase D (PLD) by glutamate in rat hippocampal slices. We first observed that the ontogenetic profile of glutamate-induced hydrolysis of phosphoinositides and of phosphatidylcholine was strikingly similar. Both pathways were significantly activated by glutamate in tissue taken from 3-, 8- and 15-day old rats, but not in adult rats. PLD activation was strongest in slices taken from 8-day old rats. At this age, quisqualate had a higher potency for PLD activation (EC50: 0.6 microM) than 1S,3R-ACPD (EC50: 16 microM) and DHPG, a specific activator of group I mGluR, was a …

Agonistmedicine.medical_specialtymedicine.drug_classBiologyReceptors Metabotropic GlutamateHippocampusCellular and Molecular Neurosciencechemistry.chemical_compoundDCG-IVInternal medicinePhospholipase DmedicineAnimalsRats WistarPharmacologyDose-Response Relationship DrugMetabotropic glutamate receptor 5Glutamate receptorQuisqualic AcidRatsMetabotropic receptorEndocrinologychemistryMetabotropic glutamate receptorACPDMetabotropic glutamate receptor 1lipids (amino acids peptides and proteins)Neuropharmacology
researchProduct

Expression of metabotropic glutamate receptors in murine thymocytes and thymic stromal cells

2000

RT-PCR combined with immunoblotting showed the expression of group-I (mGlu1 and 5) and group-II (mGlu2 and 3) metabotropic glutamate receptors in whole mouse thymus, isolated thymocytes and TC-1S thymic stromal cell line. Cytofluorimetric analysis showed that mGlu-5 receptors were absent in CD4(-)/CD8(-) but present in more mature CD4(+) CD8(+) and CD4(+)CD8(-) thymocytes. mGlu-1a receptors showed an opposite pattern of expression with respect to mGlu5, whereas mGlu2/3 receptor expression did not differ between double negative and double positive cells. mGlu receptors expressed in both thymic cell components were functional, as indicated by measurements of polyphosphoinositide hydrolysis or…

CD4-Positive T-LymphocytesMalemedicine.medical_specialtyStromal cellNeuroimmunomodulationReceptor expressionBlotting WesternImmunologyGene ExpressionThymus GlandCD8-Positive T-LymphocytesReceptors Metabotropic GlutamateCell LineMicePhosphatidylinositol PhosphatesInternal medicineCyclic AMPmedicineAnimalsImmunology and AllergyCycloleucineRNA MessengerReceptorReverse Transcriptase Polymerase Chain ReactionChemistryMetabotropic glutamate receptor 5HydrolysisMetabotropic glutamate receptor 6Flow CytometryCell biologyMice Inbred C57BLNeuroprotective AgentsEndocrinologyMetabotropic receptormetabotropic glutamate receptors; tc-1s cells; thymocytesNeurologyMetabotropic glutamate receptorMetabotropic glutamate receptor 1Neurology (clinical)Stromal CellsSignal TransductionJournal of Neuroimmunology
researchProduct

Control of cortical neuronal migration by glutamate and GABA

2015

Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist …

Cerebral Cortexneuronal migrationNeuronal Migration DisordersGABAA receptorGlutamate receptorKainate receptorReview ArticleGABAB receptorBiologylcsh:RC321-571Cellular and Molecular NeuroscienceGABAMetabotropic receptornervous systemNMDA receptorGlutamateLong-term depressionNeurosciencelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryIonotropic effectNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Development of the GABAergic system from birth to adolescence.

2011

The neurotransmitter GABA (γ-aminobutyric acid), acting via inotropic GABAA and metabotropic GABAB receptors, plays an essential role in a variety of distinct neuronal processes, including regulation of neuronal excitability, determination of temporal aspects of spike trains, control of the size and propagation of neuronal assemblies, generation of oscillatory activity, and neuronal plasticity. Although the developmental switch between excitatory and inhibitory GABAA receptor–mediated responses is widely appreciated, the fact that the postnatal maturation of the GABAergic system lasts until late adolescence is not so persuasively promoted. This review summarizes recent knowledge of the mat…

InterneuronAdolescentGABAA receptorGeneral NeuroscienceNeurogenesisInfant NewbornBrainInfantBiologyInhibitory postsynaptic potentialMetabotropic receptormedicine.anatomical_structurenervous systemGABA receptorChild PreschoolNeuroplasticityExcitatory postsynaptic potentialmedicineGABAergicAnimalsHumansNeurology (clinical)ChildNeurosciencegamma-Aminobutyric AcidThe Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry
researchProduct